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Abstract. Suppose x and y are unit 2-norm n-vectors whose components sum to zero. Let
P(x, y) be the polygon obtained by connecting (x1, y1), . . . , (xn, yn), (x1, y1) in order. We say that

P̂(x̂, ŷ) is the normalized average of P(x,y) if it is obtained by connecting the midpoints of its edges
and then normalizing the resulting vertex vectors x̂ and ŷ so that they have unit 2-norm. If this
process is repeated starting with P0 = P(x(0), y(0)), then in the limit the vertices of the polygon
iterates P(x(k), y(k)) converge to an ellipse E that is centered at the origin and whose semiaxes are
tilted forty-five degrees from the coordinate axes. An eigenanalysis together with the singular value
decomposition is used to explain this phenomena. The problem and its solution is a metaphor for
matrix-based research in computational science and engineering.
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1. Introduction. Suppose we have a pair of vectors x, y ∈ IRn that specify the
vertices of a polygon P. If we connect the edge midpoints, then we obtain another
polygon P̂. Since each midpoint is a vertex average, we can think of P̂ as an “aver-
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Fig. 1.1. A pentagon P (left) and its average P̂ (right) obtained by connecting midpoints.

aged” version of P. See Fig. 1.1 which displays the averaging of a random pentagon.
If we repeat this process, do the polygons converge to something structured or

do they remain “tangled up”? Our goal is to frame this question more precisely and
provide an answer.

1.1. A Matrix-Vector Description. The connect-the-midpoints operation in-
vites formulation as a vector operation. After all, we have a vector of identical oper-
ations to perform:

for i = 1:n
Compute the midpoint of P’s ith edge.

end
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In scalar terms, an individual midpoint computation involves the averaging of two
x-values and the averaging of two y-values, e.g.,

x̂3 =
x3 + x4

2
ŷ3 =

y3 + y4
2

.

In vector terms, the mission of the above loop is to average the x-vector with its
upshift and the y-vector with its upshift:⎡⎢⎢⎢⎢⎣

x̂1

x̂2

x̂3

x̂4

x̂5

⎤⎥⎥⎥⎥⎦ =
1
2

⎡⎢⎢⎢⎢⎣
x1 + x2

x2 + x3

x3 + x4

x4 + x5

x5 + x1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ŷ1
ŷ2
ŷ3
ŷ4
ŷ5

⎤⎥⎥⎥⎥⎦ =
1
2

⎡⎢⎢⎢⎢⎣
y1 + y2
y2 + y3
y3 + y4
y4 + y5
y5 + y1

⎤⎥⎥⎥⎥⎦ .
The term “upshift” is appropriate because the vector components move up one notch
with the top component wrapping around to the bottom. Because these transforma-
tions are linear, they can be described as matrix-vector products:

x̂ =

⎡⎢⎢⎢⎢⎣
x̂1

x̂2

x̂3

x̂4

x̂5

⎤⎥⎥⎥⎥⎦ =
1
2

⎡⎢⎢⎢⎢⎣
x1 + x2

x2 + x3

x3 + x4

x4 + x5

x5 + x1

⎤⎥⎥⎥⎥⎦ =
1
2

⎡⎢⎢⎢⎢⎣
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x1

x2

x3

x4

x5

⎤⎥⎥⎥⎥⎦ ≡ M5x

ŷ =

⎡⎢⎢⎢⎢⎣
ŷ1
ŷ2
ŷ3
ŷ4
ŷ5

⎤⎥⎥⎥⎥⎦ =
1
2

⎡⎢⎢⎢⎢⎣
y1 + y2
y2 + y3
y3 + y4
y4 + y5
y5 + y1

⎤⎥⎥⎥⎥⎦ =
1
2

⎡⎢⎢⎢⎢⎣
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
y1
y2
y3
y4
y5

⎤⎥⎥⎥⎥⎦ ≡ M5y.

In general, the transition from P to its average P̂ requires the multiplications

x̂ = Mnx

and
ŷ = Mny

where

Mn =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
. . . . . .

...
...

...
. . . 1

...
0 0 · · · 1 1
1 0 · · · · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(1.1)

We refer toMn as the averaging matrix and the vectors x, y, x̂, and ŷ as vertex vectors.
The notation P(x, y) is used to denote the polygon defined by the vertex vectors x
and y. Note that after k averaging steps we have the polygon P(Mk

nx,M
k
ny).
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The linear algebraic formulation of the polygon averaging process is appealing for
two reasons:

Algorithmic Reason. It allows us to describe the repeated averaging
process more succinctly.

Analysis Reason. It reveals that the central challenge is to understand
the behavior of the vectors Mk

nx and Mk
ny.

Being able to “spot” matrix-vector operations is a critical talent in computational
science and engineering.

1.2. Iteration: A First Try. There is no better way to develop an intuition
about repeated polygon averaging than to display graphically the progression from
one polygon to the next.

Algorithm 1

Input: Unit 2-norm n-vectors x(0) and y(0).

Display P0 = P(x(0), y(0)).

for k = 1, 2, . . .

% Compute Pk = P(x(k), y(k)) from Pk−1 = P(x(k−1), y(k−1))

x(k) = Mnx
(k−1)

y(k) = Mny
(k−1)

Display Pk.

end

By experimenting with this procedure we discover that the polygon sequence converges
to a point! See Fig. 1.2 which displays P0, P5, P20, and P100 for a typical n = 15
example. A rigorous explanation for the limiting behavior of Algorithm 1 will follow.

−0.5 0 0.5
−0.5

0

0.5
Initial Polygon

−0.5 0 0.5
−0.5

0

0.5
After 5 Averagings

−0.5 0 0.5
−0.5

0

0.5
After 20 Averagings

−0.5 0 0.5
−0.5

0

0.5
After 100 Averagings

Fig. 1.2. Repeated Averaging

We first explain why the limit point is the centroid of P0. The centroid (x̄, ȳ) of an
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n-sided polygon P(x, y) is defined by the vector centroids

x̄ =
1
n

n∑
i=1

xi =
eT x

n
ȳ =

1
n

n∑
i=1

yi =
eTx

n

where e ∈ IRn is the vector of ones, i.e.,

e =

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ .
Notice that eTMn = eT and thus,

eT x(k)

n
=

eTMnx
(k−1)

n
=

eT x(k−1)

n

and

eT y(k)

n
=

eTMny
(k−1)

n
=

eT y(k−1)

n
.

This shows that each polygon in the sequence generated by Algorithm 1 has the same
centroid. It follows that if the sequence of polygons {Pk} converges to a point, then
that point must be the centroid of P0.

It is interesting to examine experimentally the rate of convergence. For a given
P0 and δ > 0, let kδ be the smallest value of k such that√√√√ n∑

i=1

|x(k)
i − x̄|2 + |y(k)

i − ȳ|2 ≤ δ

This just means that the vertices of Pk∗ are within δ of its centroid. Experimentation
reveals that the average value of kδ increases with the square of n. See Fig. 1.3.
The averages in the table are based upon 100 trials. The initial vertex vectors were

n Average kδ

10 127
20 485
40 1830
80 6857

(δ = .001)

Fig. 1.3. Average number of iterations until the radius of Pk is about 10−3

generated using the Matlab rand function.

1.3. Iteration: A Second Try. Fig. 1.2 suggests that the polygons “untangle”
before they disappear from view in Algorithm 1. In order to examine this more
carefully, we introduce a pair of normalizations that keep the Pk from collapsing
down to a point:

1. We assume that P(x(0), y(0)) has centroid (0,0).
2. We scale the vertex vectors after each update so that they have unit 2-norm.
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These adjustments have the effect of keeping the polygon sequence {Pk} reasonably
sized and centered around the origin.

Algorithm 2

Input: Unit 2-norm n-vectors x(0) and y(0) whose components sum to zero.

Display P0 = P(x(0), y(0)).

for k = 1, 2, . . .

% Compute Pk = P(x(k), y(k)) from Pk−1 = P(x(k−1), y(k−1))

f = Mnx
(k−1), x(k) = f/‖ f ‖2

g = Mny
(k−1), y(k) = g/‖ g ‖2

Display Pk.
end

From the remarks made in §1.2, we know that each Pk has centroid (0,0). The 2-norm
scaling has no effect in this regard.

It is important to recognize that Algorithm 2 amounts to a double application of
the power method, one of the most basic iterations in the field of matrix computations
[1, p.330]. Applied to a matrix M and a unit 2-norm starting vector w(0), the power
method involves repeated matrix-vector multiplication and scaling:

w(k) = Mw(k−1) / ‖Mw(k−1) ‖2 k = 1, 2, . . .

It is ordinarily used to compute an eigenvector for M associated with M ’s largest
eigenvalue in absolute value. To see why it works, assume for clarity that M has a
full set of independent eigenvectors z1, . . . , zn with Mzi = λizi. If

|λ1| > |λ2| ≥ · · · ≥ |λn|
and

w(0) = γ1z1 + γ2z2 + · · · + γnzn ,

then w(k) is a unit vector in the direction of

Mkw(0) = λk
1

(
γ1z1 +

n∑
i=2

γi

(
λi

λ1

)k

zi

)
.(1.2)

Notice that this vector is increasingly rich in the direction of z1 provided γ1 �= 0. The
eigenvector z1 is referred to as a dominant eigenvector because it is associated with
the dominant eigenvalue λ1.

The dominant eigenvalue of the matrix Mn is 1. To see this observe that Me = e
so 1 is an eigenvalue. No eigenvalue of Mn can be larger than its 1-norm and since

‖M ‖1 = max
1≤j≤n

n∑
i=1

|mij|

it follows that ‖Mn ‖1 = 1. Thus, 1 is a dominant eigenvalue. It is also unique as we
show below.

These observations shed light on why the polygons in Algorithm 1 converge to
a point. Both sequences of vertex vectors are increasingly rich in the direction of e
which is tantamount to saying that the components of x(k) and y(k) are increasingly
uniform. Since the iteration preserves centroids, the limiting values are the centroids
of the initial vertex vectors x(0) and y(0) respectively.
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1.4. From Experimentation to Conjecture. If we experiment with Algo-
rithm 2 and display the Pk, then we discover an amazing phenomena:

Conjecture 1. No matter how random the initial P0, the edges of the Pk

eventually “uncross” and in the limit, the vertices appear to arrange themselves
around an ellipse that is tilted forty-five degrees from the coordinate axes.

See Fig. 1.4 which traces a typical n = 20 example. Our goal is to explain the
apparent transition from “chaos” to “order”. The table in Fig. 1.5 reports how many

Fig. 1.4. The progression from P0 to P18 to P200 for an n = 20 example.

iterations are required (on average) before the polygon “untangles.” Because of the

n Average ku

10
20
40
80

8.7
38.1

163.0
647.5

Fig. 1.5. ku is the smallest k so that the edges of P(x(k), y(k)) do not cross. For each n, the
averages were estimated from 100 random examples.

power method connection, the explanation revolves around the eigensystem properties
of the averaging matrix Mn. The polygons in Algorithm 2 do not converge to a point
because the vertex vector iterates x(k) and y(k) have centroid zero and are therefore
orthogonal to the Mn’s dominant eigenvector e. In the notation of equation (1.2), the
γ1 term for both x(k) and y(k) is missing. Instead, these vectors converge to a very
special 2-dimensional invariant subspace which we identify in §2. Experimentation
reveals that within this subspace the sequence of vertex vectors is cyclic. We explain
this in §3 and go on to show in §4 that the vertices (x(k)

i , y
(k)
i ) converge to an ellipse

E having a forty-five degree tilt. The semiaxes of E are specified in terms of a 2-by-2
singular value decomposition related to the initial vertex vectors. Concluding remarks
are offered in §5.
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2. The Subspace D2. The behavior of the vertex vectors x(k) and y(k) in Algo-
rithm 2 requires a thorough understanding of the eigensystem of the averaging matrix
Mn. Fortunately, the eigenvalues and eigenvectors of this matrix can be specified in
closed form.

2.1. The Upshift Matrix. Define the n-by-n upshift matrix Sn by

Sn =
[
en e1 e2 · · · en−1

]
(2.1)

where ek is the kth column of the n-by-n identity matrix In, e.g.,

S5 =

⎡⎢⎢⎢⎢⎣
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤⎥⎥⎥⎥⎦ .
From (1.1) we see that the averaging matrix Mn is given by

Mn =
1
2

(In + Sn) .(2.2)

The eigensystem of Sn is completely known and involves the nth roots of unity:

ωj = cos
(

2πj
n

)
+ i · sin

(
2πj
n

)
j = 0:n− 1.

Using the fact that ωn
j = 1, it is easy to verify for j = 0:n− 1 that

vj =
√

1/n

⎡⎢⎢⎢⎢⎢⎣
1
ωj

ω2
j
...

ωn−1
j

⎤⎥⎥⎥⎥⎥⎦ ,
has unit 2-norm and satisfies Snvj = ωjvj . Moreover, v0, . . . , vn−1 are mutually
orthogonal. To see this we observe that

vH
i Snvj = vH

i (Snvj) = ωjv
H
i vj.

On the other hand, since SH
n = ST

n = S−1
n we also have

vH
i Snvj = (vH

i Sn)vj = (S−1
n vi)Hvj = (vi/ωi)Hvj = ωiv

H
i vj .

It follows that vH
i vj = 0 if i �= j. The “H” superscript indicates Hermitian transpose.

2.2. The Eigenvalues and Eigenvectors of Mn. The averaging matrixMn =
(In + Sn)/2 has the same eigenvectors as Sn. Its eigenvalues λ1, . . . , λn are given by

λ1 = (1 + ω0)/2 = 1

λ2 = (1 + ω1)/2 = (1 + cos(2π/n) + i · sin(2π/n))/2

λ3 = (1 + ωn−1)/2 = λ̄2

λ4 = (1 + ω2)/2 = (1 + cos(4π/n) + i · sin(4π/n))/2

λ5 = (1 + ωn−2)/2 = λ̄4

...
...

λn = (1 + ωm)/2

(2.3)
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where m = floor(n/2). We have chosen to order the eigenvalues this way because it
groups together complex conjugate eigenvalue pairs. As illustrated in Fig. 2.1, the
λi are on a circle in the complex plane that has center (0.5,0.0) and diameter one.
Moreover,

|λ1| > |λ2| = |λ3| > . . . > |λn−1| ≥ |λn|.(2.4)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 λ
1
  

   λ
2
  

 λ
4
  

 λ
5
  

 λ
3
  

Fig. 2.1. The eigenvalues of M5.

Let z1, . . . , zn be a reordering of the eigenvectors v0, . . . , vn−1 so that

Mnzk = λkzk k = 1:n.(2.5)

The behavior of the vertex vectors x(k) and y(k) depends upon the ratio |λ2/λ4|k and
the projection of x(0) and y(0) onto the span of z2 and z3. We proceed to make this
precise by establishing a number of key facts.

2.3. The Damping Factor. A unit vector w ∈ Cn whose components sum to
zero is said to have centroid zero. It has an eigenvector expansion of the form

w = γ2z2 + · · · + γnzn

where |γ2|2 + · · · + |γn|2 = 1. This is because {z1, . . . , zn} is an orthonormal basis,
z1 is a multiple of e, and a centroid zero vector w satisfies eTw = 0. It follows that

Mk
nw = |λ2|k

⎛⎝γ2

(
λ2

|λ2|
)k

z2 + γ3

(
λ3

|λ2|
)k

z3 +
n∑

j=4

γj

(
λj

|λ2|
)k

zj

⎞⎠ .(2.6)

From the assumption (2.4) we see that the vectors Mk
nw are increasingly rich in z2

and z3. The rate at which the components in directions z4, . . . , zn are damped clearly
depends upon the quotient

ρn ≡
∣∣∣∣λ4

λ2

∣∣∣∣ = max
{∣∣∣∣λ4

λ2

∣∣∣∣ , . . . , ∣∣∣∣λn

λ2

∣∣∣∣} .(2.7)
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Since∣∣∣∣λ4

λ2

∣∣∣∣2 =
|1 + cos(4π/n) + i sin(4π/n)|2
|1 + cos(2π/n) + i sin(2π/n)|2 =

1 + cos(4π/n)
1 + cos(2π/n)

=
cos2(2π/n)
cos2(π/n)

,

it follows that

ρn =
∣∣∣∣λ4

λ2

∣∣∣∣ =
cos2(π/n) − sin2(π/n)

cos(π/n)
= cos(π/n)

(
1− tan2(π/n)

)
.

Selected values of ρn are given in Fig. 2.2. It can be shown by manipulating the

n ρn

5 0.3820
10 0.8507
20 0.9629
30 0.9835
40 0.9907
50 0.9941

100 0.9985

Fig. 2.2. The Damping Factor ρn

approximations

cos(π/n) = 1− 1
2

(π
n

)2

+ O

(
1
n4

)
and

cos(2π/n) = 1− 1
2

(
2π
n

)2

+ O

(
1
n4

)
that

ρn = 1 −
(π
n

)2

+ O

(
1
n4

)
.

Thus, the damping proceeds much more slowly for large n, a point already conveyed
by Fig. 2.2.

2.4. Real Versus Complex Arithmetic. It is important to appreciate the
interplay between real and complex arithmetic in equation (2.6). The lefthand side
vector Mk

nw is real but the linear combinations on the righthand side involve complex
eigenvectors. However, the eigenvectors and eigenvalues of a real matrix such as Mn

come in conjugate pairs, so the imaginary parts cancel out in the summation. In
particular, the “undamped” vector

w̃(k) = γ2

(
λ2

|λ2|
)k

z2 + γ3

(
λ3

|λ2|
)k

z3

in (2.6) is real because γ3 = γ̄2, λ3 = λ̄2, and z3 = z̄2. Moreover, it belongs to the
real subspace D2 defined by

D2 = span{Re(z2), Im(z2)} = span{Re(z3), Im(z3)}.(2.8)
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This subspace is an invariant subspace of Mn. To see this, we compare the real and
imaginary parts of the eigenvector equation Mnz2 = λ2z2:

Mn (Re(z2) + i · Im(z2)) = (cos(2π/n) + i · sin(2π/n)) (Re(z2) + i · Im(z2)) .

It is clear that Mn ·Re(z2) ∈ D2 and Mn ·Im(z2) ∈ D2.

2.5. Convergence to D2. The next result characterizes the convergence of the
power method when it is applied with the matrix Mn and a starting vector whose
components sum to zero.

Theorem 2.1. Suppose

w(0) =
n∑

j=2

γjzj

is a real unit 2-norm vector and

μ =
√
|γ2|2 + |γ3|2 > 0.

If Pn is the orthogonal projection onto span{z2 , z3}⊥ and w(k) is a unit 2-norm vector
in the direction of Mk

nw
(0), then

‖ Pnw
(k) ‖2 ≤ ρk

n

√
1− μ2

μ
.

Proof. Since the eigenvector set {z2, . . . , zn} is orthonormal, it follows from (2.6)
that

w(k) =

⎛⎝ n∑
j=2

γjλ
k
j zj

⎞⎠/√√√√ n∑
j=2

|γj|2|λj|2k.

The projection Pnw
(k) has the same form without the z2 and z3 terms in the numer-

ator. Thus,

‖ Pnw
(k) ‖22 =

n∑
j=4

|γj |2|λj|2k

n∑
j=2

|γj |2|λj|2k

≤
|λ4|2k

n∑
j=4

|γj|2

|λ2|2k(|γ2|2 + |γ3|2)
= ρ2k

n

1− μ2

μ2

where we used (2.7), |λ2| = |λ3|, and |γ2|2 + · · ·+ |γn|2 = 1.

The quantity ‖ Pnw
(k) ‖2 can be regarded as the distance from w(k) to D2. It is easy

to visualize this quantity for the case n = 3. The subspace D2 is a plane, w(k) points
out of the plane, and ‖ Pnw

(k) ‖2 is the length of the dropped perpendicular.
We mention that in exact arithmetic, the vertex vectors in Algorithm 2 have

centroid zero. However, roundoff error gradually changes this. Thus, if n is large,
then it makes sense to “re-center” the vertex vectors every so often, e.g.,

x(k) ← x(k) − (eTx(k)/n)e .
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Another interesting issue associated with Algorithm 2 is the remote chance that
the initial vertex vectors are orthogonal to D2. In this case the vertex vectors converge
to the invariant subspace spanned by Re(z4) and Im(z4). The cosine/cosine evalu-
ations in these vectors are spaced twice as far apart as the cosine/sine evaluations
in Re(z2) and Im(z2). The net result is that the vertices in Pk “pair up” as k gets
large. We will not pursue further the behavior of “degenerate” vertex vectors and the
associated polygons.

2.6. A Real Orthonormal Basis for D2. The real and imaginary parts of the
eigenvector z2 (and its conjugate z3) are highly structured. If

τ =

⎡⎢⎢⎢⎢⎢⎣
0

2π/n
4π/n

...
2(n− 1)π/n

⎤⎥⎥⎥⎥⎥⎦(2.9)

then in vector notation1, z2 = (cos(τ ) + i · sin(τ )) /
√
n. Using elementary trigono-

metric identities, it is easy to show that

cos(τ )T cos(τ ) =
n∑

j=1

cos(τj)2 =
n∑

j=1

(1 + cos(2τj))/2 = n/2 ,

sin(τ )T sin(τ ) =
n∑

j=1

sin(τj)2 =
n∑

j=1

(1− cos(2τj))/2 = n/2 ,

and

sin(τ )T cos(τ ) =
n∑

j=1

sin(τj) cos(τj) =
n∑

j=1

sin(2τj)/2 = 0 .

It follows from (2.8) that the vectors

c =
√

2/n

⎡⎢⎢⎢⎣
cos(τ1)
cos(τ2)

...
cos(τn)

⎤⎥⎥⎥⎦ s =
√

2/n

⎡⎢⎢⎢⎣
sin(τ1)
sin(τ2)

...
sin(τn)

⎤⎥⎥⎥⎦(2.10)

form a real orthonormal basis for D2.

3. Tracking the Vertex Vectors. Because they are orthogonal to z1 (a mul-
tiple of the vector of all ones), the initial vertex vectors x(0) and y(0) in Algorithm 2
can be expressed as a linear combination of the orthonormal vectors {c, s, z4, . . . , zn}:

x(0) = α1c + α2s + vector in span{z4, . . . , zn}
y(0) = β1c + β2s + vector in span{z4, . . . , zn}

.(3.1)

It follows from Theorem 2.1 that for large k

x(k) = u(k) + O(ρk
n)

y(k) = v(k) + O(ρk
n)

(3.2)

1If f is a function defined on the components of τ ∈ IRn, then the i-th component of f(τ ) is f(τi).
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where u(k) and v(k) are the unit vectors

u(k) = α1M
k
nc + α2M

k
ns

‖ α1M
k
nc+ α2M

k
ns ‖2

v(k) =
β1M

k
nc+ β2M

k
ns

‖ β1M
k
nc+ β2M

k
ns ‖2

.

(3.3)

Note that these vectors are in the subspace D2. Our plan is to study the polygon
sequence {P(u(k), v(k))} since its limiting behavior coincides with limiting behavior
of the polygon sequence {P(x(k), y(k))}.

3.1. An Experiment and Another Conjecture. For clarity we reproduce
Algorithm 2 for the case when the unit 2-norm starting vectors are in D2:

Algorithm 3

Input: Real numbers θu and θv.

u(0) = cos(θu)c + sin(θu)s

v(0) = cos(θv)c + sin(θv)s

Display P0 = P(u(0), v(0)).

for k = 1, 2, . . .

% Compute Pk = P(u(k), v(k)) from Pk−1 = P(u(k−1), v(k−1))

f = Mnu
(k−1), u(k) = f/‖ f ‖2

g = Mnv
(k−1), v(k) = g/‖ g ‖2

Display Pk.
end

Experimenting with this iteration leads to a second conjecture:

Conjecture 2 . For any input values θu and θv in Algorithm 3, the even-
indexed polygons P2k are all the same and the odd-indexed polygons P2k+1

are all the same.

Fig. 3.1 displays “Peven” and “Podd” for a typical n = 5 example. What does this
imply about the vertex vectors? Displaying the sequence {u(k)} (or {v(k)}) reveals
the following progression:⎡⎢⎢⎢⎢⎣

a
b
c
d
e

⎤⎥⎥⎥⎥⎦→
⎡⎢⎢⎢⎢⎣
a′

b′

c′

d′

e′

⎤⎥⎥⎥⎥⎦→
⎡⎢⎢⎢⎢⎣
e
a
b
c
d

⎤⎥⎥⎥⎥⎦→
⎡⎢⎢⎢⎢⎣
e′

a′

b′

c′

d′

⎤⎥⎥⎥⎥⎦→
⎡⎢⎢⎢⎢⎣
d
e
a
b
c

⎤⎥⎥⎥⎥⎦→
⎡⎢⎢⎢⎢⎣
d′

e′

a′

b′

c′

⎤⎥⎥⎥⎥⎦→
⎡⎢⎢⎢⎢⎣
c
d
e
a
b

⎤⎥⎥⎥⎥⎦→ etc.

In other words, the vertex vectors associated with Pk are upshifted versions of the
vertex vectors associated with Pk−2. More precisely,

P2k = P(Sk
nu

(0), Sk
nv

(0)) = P(u(0), v(0))

P2k+1 = P(Sk
nu

(1), Sk
nv

(1)) = P(u(1), v(1)).
(3.4)

Proving this result is an exercise in sine/cosine manipulation as we now show. Readers
with an aversion to trigonometric identities are advised to skip to §3.3!
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Fig. 3.1. The vertices of Peven (red) and Podd (blue). (n = 12)

3.2. Repeated Averaging of the Vectors c and s. We need to characterize
the vectors Mk

nc and Mk
ns since it is clear from Algorithm 3 that both u(k) and v(k)

are in their span. Towards that end we define the n-vectors c(τ +Δ) and s(τ +Δ) by

c(τ + Δ) =
√

2/n

⎡⎢⎣ cos(τ1 + Δ)
...

cos(τn + Δ)

⎤⎥⎦(3.5)

and

s(τ + Δ) =
√

2/n

⎡⎢⎣ sin(τ1 + Δ)
...

sin(τn + Δ)

⎤⎥⎦(3.6)

where Δ ∈ IR and τ ∈ IRn is given by (2.9). The notation τ +Δ designates the vector
obtained by adding the scalar Δ to each component of the vector τ .

Note that if Δ = 0, then c(τ +Δ) = c and s(τ +Δ) = s where c and s are defined
by (2.10). Moreover, c(τ +Δ) and s(τ+Δ) each have unit 2-norm and are orthogonal
to each other. This follows from

c(τ + Δ) = cos(Δ)c− sin(Δ)s

s(τ + Δ) = sin(Δ)c+ cos(Δ)s

and §2.6, where we showed that c and s have unit 2-norm and are orthogonal to each
other.

Define τn+1 = τ1 = 0. If μi = τi + Δ + π/n for i = 1:n, then using the identities

cos(α + β) + cos(α− β) = 2 cos(α) cos(β)(3.7)

sin(α+ β) + sin(α− β) = 2 sin(α) cos(β)(3.8)

we have

(Mnc(τ + Δ))i =
1
2

√
2
n

(cos(τi + Δ) + cos(τi+1 + Δ))
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=
1
2

√
2
n

(cos(μi − π/n) + cos(μi + π/n))

=

√
2
n

cos
(π
n

)
cos(μi)

and

(Mns(τ + Δ))i =
1
2

√
2
n

(sin(τi + Δ) + sin(τi+1 + Δ))

=
1
2

√
2
n

(sin(μi − π/n) + sin(μi + π/n))

=

√
2
n

cos
(π
n

)
sin(μi).

Thus,

Mn c(τ + Δ) = cos
(π
n

)
c
(
τ + Δ +

π

n

)
Mn s(τ + Δ) = cos

(π
n

)
s
(
τ + Δ +

π

n

)
and so by induction we have

Mk
n c = cos

(π
n

)k

c
(
τ +

kπ

n

)
Mk

n s = cos
(π
n

)k

s
(
τ +

kπ

n

)
.

From Algorithm 3 we see that u(k) and v(k) are unit 2-norm vectors in the direction
of

Mk
nu

(0) = cos
(π
n

)k
(

cos(θu)c
(
τ +

kπ

n

)
+ sin(θu)s

(
τ +

kπ

n

))

Mk
nv

(0) = cos
(π
n

)k
(

cos(θv)c
(
τ +

kπ

n

)
+ sin(θv)s

(
τ +

kπ

n

))
.

Since {c, s} is an orthonormal set, we conclude that

u(k) = cos(θu)c
(
τ +

kπ

n

)
+ sin(θu)s

(
τ +

kπ

n

)
(3.9)

v(k) = cos(θv)c
(
τ +

kπ

n

)
+ sin(θv)s

(
τ +

kπ

n

)
.(3.10)

From the definition of τ , c, and s, it follows that

u(k+2) = Snu
(k) v(k+2) = Snv

(k).(3.11)

Together with (3.4), this confirms Conjecture 2.
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4. The Limiting Ellipse. We now show that for all i and k, the points (u(k)
i , v

(k)
i )

in Algorithm 3 are on the same ellipse E and that E has a forty-five degree tilt. We
refer to this limiting ellipse as the D2 ellipse since it depends upon the vertex vector
projections into that invariant subspace.

4.1. Tilted Ellipses. As t ranges over all real values, the set of points (u(t), v(t))
given by

[
u(t)

v(t)

]
=

[
cos(φ) − sin(φ)

sin(φ) cos(φ)

] [
σ1 0

0 σ2

][
cos(t)

sin(t)

]
(4.1)

define an ellipse with center (0,0), tilt φ, and semiaxes |σ1| and |σ2|. It is obtained
by rotating the ellipse (

u

σ1

)2

+
(
v

σ2

)2

= 1

counterclockwise φ radians. See Fig. 4.1.

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

φ

|σ
1
|

|σ
2
|

Fig. 4.1. A Tilted Ellipse

The set of points (u(t), v(t)) defined by

[
u(t)

v(t)

]
=

[
a11 a12

a21 a22

][
cos(t)

sin(t)

]
≡ A

[
cos(t)

sin(t)

]
(4.2)

is also an ellipse with center (0,0). Its semiaxes and tilt are specified by the singular
value decomposition (SVD) of A. The SVD of a real n-by-n matrix A guarantees
that we can find orthogonal U and V such that A = Udiag(σ1, . . . , σn)V T . Usually
the transformation matrices U and V are chosen so that the σi are nonnegative and
ordered. However, in our ellipse application we have no need for that normalization.
Specialized to the 2-by-2 case, the SVD states that we can find φ and ψ so that[

a11 a12

a21 a22

]
=

[
cos(φ) − sin(φ)

sin(φ) cos(φ)

] [
σ1 0

0 σ2

][
cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

]T

.
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It follows that the ellipse (4.2) has semiaxes |σ1| and |σ2| and tilt φ. Note that it is
the U matrix that specifies the tilt.

4.2. The D2 Ellipse. If ti = τi + kπ/n for i = 1:n and the vertex vectors u(k)

and v(k) are generated by Algorithm 3, then from (3.5), (3.6), (3.9) and (3.10) we
have [

u
(k)
i

v
(k)
i

]
=

√
2
n

⎡⎣ cos(θu) sin(θu)

cos(θv) sin(θv)

⎤⎦⎡⎣ cos(ti)

sin(ti)

⎤⎦ .
This shows that the vertices of the polygon P(u(k), v(k)) are on the ellipse E defined
by the set of all (u(t), v(t)) where[

u(t)

v(t)

]
=

√
2
n

⎡⎣ cos(θu) sin(θu)

cos(θv) sin(θv)

⎤⎦⎡⎣ cos(t)

sin(t)

⎤⎦ −∞ < t <∞.(4.3)

To specify the tilt and semiaxes of E , we need the SVD of the 2-by-2 transformation
matrix.

Theorem 4.1. If θu and θv are real numbers and

A =

⎡⎣ cos(θu) sin(θu)

cos(θv) sin(θv)

⎤⎦ ,
then UTAV = Σ where

U =

⎡⎣ cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)

⎤⎦ , V =

⎡⎣ cos(a) − sin(a)

sin(a) cos(a)

⎤⎦ ,
and

Σ =

⎡⎣ √2 cos(b) 0

0
√

2 sin(b)

⎤⎦
with

a =
θv + θu

2
b =

θv − θu

2
.

Proof. Using the trigonometric identities (3.7) and (3.8) we have

UTA =
1√
2

⎡⎣ cos(θv) + cos(θu) sin(θv) + sin(θu)

cos(θv)− cos(θu) sin(θv)− sin(θu)

⎤⎦

=
√

2

⎡⎣ cos(b) cos(a) cos(b) sin(a)

− sin(b) sin(a) sin(b) cos(a)

⎤⎦ .
But this is precisely ΣV T .
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Using this result, it follows that the D2 ellipse (4.3) has a 45-degree tilt and semiaxes
|σ1| and |σ2| where

σ1 =
2√
n

cos
(
θv − θu

2

)
σ2 =

2√
n

sin
(
θv − θu

2

)
.(4.4)

This confirms Conjecture 1.

4.3. Specification Via x(0) and y(0). We now specify the limiting ellipse as-
sociated with Algorithm 2 in terms of the initial vertex vectors x(0) and y(0). From
(3.1) and the orthonormality of {c, s, z4, . . . , zn} we know that

x(0) = (cTx(0))c + (sTx(0))s + vector in span{z4, . . . , zn}
y(0) = (cT y(0))c + (cT y(0))s + vector in span{z4, . . . , zn}.

Referring to (3.2) and (3.3), because all but the c and s terms are damped out, the
limiting ellipse for Algorithm 2 is the same as the limiting ellipse for Algorithm 3 with
starting unit vectors

u(0) = cos(θu)c + sin(θu)s

v(0) = cos(θv)c + sin(θv)s

where

cos(θu) =
cTx(0)√

(cT x(0))2 + (sT x(0))2
sin(θu) =

sT x(0)√
(cT x(0))2 + (sT x(0))2

cos(θu) =
cT y(0)√

(cT y(0))2 + (sT y(0))2
cos(θu) =

sT y(0)√
(cT y(0))2 + (sT y(0))2

.

These four numbers together with (4.4) completely specify the 45-degree tilted ellipse
associated with Algorithm 2.

4.4. Alternative Normalizations. It is natural to ask what happens to the
normalized polygon averaging process if we use an alternative to the 2-norm for nor-
malization. A change in norm will only affect the size of the vertex vectors, not their
direction. Since vertex vector convergence to D2 remains in force, we can explore the
limiting effect of different normalizations by considering the following generalization
of Algorithm 3:

Algorithm 4
Input: Vector norms ‖ · ‖x and ‖ · ‖y and real n-vectiors ũ(0) and ṽ(0)

belonging to D2 that satisfy ‖ ũ(0) ‖x = ‖ ṽ(0) ‖y = 1.

for k = 1, 2, . . .

% Compute P̃k = P(ũ(k), ṽ(k)) from P̃k−1 = P(ũ(k−1), ṽ(k−1))

f = Mnũ
(k−1) , ũ(k) = f/‖ f ‖x

g = Mnṽ
(k−1) , ṽ(k) = g/‖ g ‖y

end
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If the initial vertex vectors in Algorithm 4 are multiples of the initial vertex vectors
in Algorithm 3, then it follows that for all k

ũ(k) = u(k) / ‖ u(k) ‖x
ṽ(k) = v(k) / ‖ v(k) ‖x.

(4.5)

Therefore, our task is to examine the polygon sequence

P̃k = P(ũ(k), ṽ(k)) = P(αku
(k), βkv

(k)) .

where

αk = 1/‖ u(k) ‖x
βk = 1/‖ v(k) ‖y

.(4.6)

Since the vertices of P(u(k), v(k)) are on an ellipse E of the form[
x(t)

y(t)

]
=

[
cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)

][
σ1 0

0 σ2

][
cos(t)

sin(t)

]
,

it follows that the vertices of P̃k are on the ellipse Ẽk defined by[
x̃(t)

ỹ(t)

]
=

[
αi 0

0 βi

][
x(t)

y(t)

]
.

Note that if

Zk =

[
αk cos(φ)σ1 −αk sin(φ)σ2

βk sin(φ)σ1 βk cos(φ)σ2

]
,(4.7)

then [
x̃(t)

ỹ(t)

]
= Z

[
cos(t)

sin(t)

]
.

From our SVD/ellipse remarks in §4.1, we know that if

Zk =

[
cos(φ(k)) − sin(φ(k))

sin(φ(k)) cos(φ(k))

][
σ

(k)
1 0

0 σ
(k)
2

][
cos(ψ(k)) − sin(ψ(k))

sin(ψ(k)) cos(ψ(k))

]T

is a singular value decomposition, then Ẽk has tilt φ(k) and semiaxes |σ(k)
1 | and |σ(k)

2 |.
We know from (3.11) that

u(2k) = Sk
nu

(0) u(2k+1) = Sk
nu

(1)

v(2k) = Sk
nv

(0) v(2k+1) = Sk
nv

(1)
(4.8)

Since Sn
n = I, we have u(2n) = u(0), v(2n) = v(0), u(2n+1) = u(1), and v(2n+1) = v(1).

It follows from (4.6) that Ẽ2n+k = Ẽk. Thus, the vertices of P̃k in Algorithm 4 are on
the ellipse Ẽkmod 2n.
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The cycling is “more rapid” when the x-norm and y-norms in Algorithm 4 are
p-norms:

‖ w ‖p = (|w1|p + · · ·+ |wp|p)1/p

This class of norms has the property that it is preserved under permutation, in par-
ticular, ‖ Snw ‖p = ‖ w ‖p. It follows from (4.5)-(4.6) that if

α0 = 1/‖ u(0) ‖x β0 = 1/‖ v(0) ‖y
α1 = 1/‖ u(1) ‖x β1 = 1/‖ v(1) ‖y

then

P(ũ(2k), ṽ(2k)) = P( Sk
nu

(0)/‖ Sk
nu

(0) ‖x , Sk
nv

(0)/‖ Sk
nv

(0) ‖y )

= P( u(2k)/‖ Sk
nu

(0) ‖x , v(2k)/‖ Sk
nv

(0) ‖y )

= P(α0 u
(2k), β0 v

(2k))

and likewise P(ũ(2k+1), ṽ(2k+1)) = P(α1 u
(2k+1), β1 v

(2k+1)). This shows that if the
x and y norms in Algorithm 4 are p norms, then P̃k can be obtained from Pk simply
by scaling u(k) and v(k) by α0 and β0 if k is even and by α1 and β1 if k is odd. There
are thus a pair of ellipses underlying Algorithm 4 in this case.

Finally, we mention that if the x-norm and y-norm in Algorithm 4 are p-norms
and n is odd, then all the polygons have their vertices on the same ellipse. This is
because when n is odd, the vector c(τ +π/n) is a permutation of c(τ ) and the vector
s(τ +π/n) is a permutation of s(τ ). It follows from (3.9)-(3.10) that u(1) and v(1) are
permutations of u(0) and v(0) respectively and therefore have the same p-norm.

5. Summary. The polygon averaging problem and its analysis is a metaphor
for matrix-based computational science and engineering. Consider the path that we
followed from phenomena to explanation. We experimented with a simple iteration
and observed that it transforms something that is chaotic and rough into something
that is organized and smooth. As a step towards explaining the limiting behavior of
the polygon sequence, we described in matrix-vector notation the averaging process.
This led to an eigenanalysis, the identification of a crucial invariant subspace, and a
vertex-vector convergence analysis. We then used the singular value decomposition
to connect our algebraic manipulations to a simple underlying geometry. These are
among the most familiar waypoints in computational science and engineering.
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